Copied to
clipboard

G = C20.12C42order 320 = 26·5

5th non-split extension by C20 of C42 acting via C42/C4=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.12C42, D10.13C42, Dic5.11C42, (C2×C8)⋊9F5, (C8×F5)⋊6C2, C4.F55C4, C4⋊F5.2C4, (C2×C40)⋊10C4, C4.5(C4×F5), (C8×D5)⋊13C4, C8⋊F58C2, C8.34(C2×F5), C40.41(C2×C4), C22.F57C4, C22⋊F5.4C4, C22.4(C4×F5), D5.1(C8○D4), C4.50(C22×F5), C53(C82M4(2)), (C2×C10).18C42, C20.90(C22×C4), C10.13(C2×C42), D5⋊C8.18C22, (C8×D5).66C22, (C4×D5).87C23, (C4×F5).17C22, D5⋊M4(2).12C2, D10.33(C22×C4), Dic5.32(C22×C4), D10.C23.12C2, C5⋊C8.1(C2×C4), C2.14(C2×C4×F5), (D5×C2×C8).34C2, (C2×C52C8)⋊19C4, (C2×F5).3(C2×C4), C52C8.54(C2×C4), (C4×D5).66(C2×C4), (C2×C4).135(C2×F5), (C2×C20).146(C2×C4), (C2×C4×D5).402C22, (C22×D5).88(C2×C4), (C2×Dic5).126(C2×C4), SmallGroup(320,1056)

Series: Derived Chief Lower central Upper central

C1C10 — C20.12C42
C1C5C10D10C4×D5C4×F5D10.C23 — C20.12C42
C5C10 — C20.12C42
C1C8C2×C8

Generators and relations for C20.12C42
 G = < a,b,c | a20=b4=1, c4=a10, bab-1=a3, ac=ca, bc=cb >

Subgroups: 394 in 130 conjugacy classes, 66 normal (40 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C4×C8, C8⋊C4, C42⋊C2, C22×C8, C2×M4(2), C52C8, C40, C5⋊C8, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C82M4(2), C8×D5, C2×C52C8, C2×C40, D5⋊C8, C4.F5, C4×F5, C4⋊F5, C22.F5, C22⋊F5, C2×C4×D5, C8×F5, C8⋊F5, D5×C2×C8, D5⋊M4(2), D10.C23, C20.12C42
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, C22×C4, F5, C2×C42, C8○D4, C2×F5, C82M4(2), C4×F5, C22×F5, C2×C4×F5, C20.12C42

Smallest permutation representation of C20.12C42
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 69 11 79)(2 76 20 62)(3 63 9 65)(4 70 18 68)(5 77 7 71)(6 64 16 74)(8 78 14 80)(10 72 12 66)(13 73 19 75)(15 67 17 61)(21 56 23 50)(22 43 32 53)(24 57 30 59)(25 44 39 42)(26 51 28 45)(27 58 37 48)(29 52 35 54)(31 46 33 60)(34 47 40 49)(36 41 38 55)
(1 32 79 43 11 22 69 53)(2 33 80 44 12 23 70 54)(3 34 61 45 13 24 71 55)(4 35 62 46 14 25 72 56)(5 36 63 47 15 26 73 57)(6 37 64 48 16 27 74 58)(7 38 65 49 17 28 75 59)(8 39 66 50 18 29 76 60)(9 40 67 51 19 30 77 41)(10 21 68 52 20 31 78 42)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,69,11,79)(2,76,20,62)(3,63,9,65)(4,70,18,68)(5,77,7,71)(6,64,16,74)(8,78,14,80)(10,72,12,66)(13,73,19,75)(15,67,17,61)(21,56,23,50)(22,43,32,53)(24,57,30,59)(25,44,39,42)(26,51,28,45)(27,58,37,48)(29,52,35,54)(31,46,33,60)(34,47,40,49)(36,41,38,55), (1,32,79,43,11,22,69,53)(2,33,80,44,12,23,70,54)(3,34,61,45,13,24,71,55)(4,35,62,46,14,25,72,56)(5,36,63,47,15,26,73,57)(6,37,64,48,16,27,74,58)(7,38,65,49,17,28,75,59)(8,39,66,50,18,29,76,60)(9,40,67,51,19,30,77,41)(10,21,68,52,20,31,78,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,69,11,79)(2,76,20,62)(3,63,9,65)(4,70,18,68)(5,77,7,71)(6,64,16,74)(8,78,14,80)(10,72,12,66)(13,73,19,75)(15,67,17,61)(21,56,23,50)(22,43,32,53)(24,57,30,59)(25,44,39,42)(26,51,28,45)(27,58,37,48)(29,52,35,54)(31,46,33,60)(34,47,40,49)(36,41,38,55), (1,32,79,43,11,22,69,53)(2,33,80,44,12,23,70,54)(3,34,61,45,13,24,71,55)(4,35,62,46,14,25,72,56)(5,36,63,47,15,26,73,57)(6,37,64,48,16,27,74,58)(7,38,65,49,17,28,75,59)(8,39,66,50,18,29,76,60)(9,40,67,51,19,30,77,41)(10,21,68,52,20,31,78,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,69,11,79),(2,76,20,62),(3,63,9,65),(4,70,18,68),(5,77,7,71),(6,64,16,74),(8,78,14,80),(10,72,12,66),(13,73,19,75),(15,67,17,61),(21,56,23,50),(22,43,32,53),(24,57,30,59),(25,44,39,42),(26,51,28,45),(27,58,37,48),(29,52,35,54),(31,46,33,60),(34,47,40,49),(36,41,38,55)], [(1,32,79,43,11,22,69,53),(2,33,80,44,12,23,70,54),(3,34,61,45,13,24,71,55),(4,35,62,46,14,25,72,56),(5,36,63,47,15,26,73,57),(6,37,64,48,16,27,74,58),(7,38,65,49,17,28,75,59),(8,39,66,50,18,29,76,60),(9,40,67,51,19,30,77,41),(10,21,68,52,20,31,78,42)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F···4N 5 8A8B8C8D8E8F8G8H8I8J8K···8T10A10B10C20A20B20C20D40A···40H
order122222444444···4588888888888···81010102020202040···40
size11255101125510···104111122555510···1044444444···4

56 irreducible representations

dim11111111111112444444
type+++++++++
imageC1C2C2C2C2C2C4C4C4C4C4C4C4C8○D4F5C2×F5C2×F5C4×F5C4×F5C20.12C42
kernelC20.12C42C8×F5C8⋊F5D5×C2×C8D5⋊M4(2)D10.C23C8×D5C2×C52C8C2×C40C4.F5C4⋊F5C22.F5C22⋊F5D5C2×C8C8C2×C4C4C22C1
# reps12211142244448121228

Matrix representation of C20.12C42 in GL4(𝔽41) generated by

347734
701414
2734270
0273427
,
9000
0009
0900
32323232
,
27000
02700
00270
00027
G:=sub<GL(4,GF(41))| [34,7,27,0,7,0,34,27,7,14,27,34,34,14,0,27],[9,0,0,32,0,0,9,32,0,0,0,32,0,9,0,32],[27,0,0,0,0,27,0,0,0,0,27,0,0,0,0,27] >;

C20.12C42 in GAP, Magma, Sage, TeX

C_{20}._{12}C_4^2
% in TeX

G:=Group("C20.12C4^2");
// GroupNames label

G:=SmallGroup(320,1056);
// by ID

G=gap.SmallGroup(320,1056);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,100,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^20=b^4=1,c^4=a^10,b*a*b^-1=a^3,a*c=c*a,b*c=c*b>;
// generators/relations

׿
×
𝔽